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Summary. For visual analysis of the density reorganization and distortion, the 
one-dimensional cut A¢(x, Yo, Zo) and the two-dimensional cut A¢(x, y, Zo) of the 
three-dimensional electron density difference function AQ(x, y, z) are frequently 
employed. However, these cut functions do not satisfy any sum rules in contrast 
to the original difference function A¢(x, y, z). To avoid this difficulty, the use of 
the marginal electron density functions Cx(x) and ¢xy(X, y) and their difference 
functions Aox(x) and A~xy(X, y) is proposed. The marginal densities are conden- 
sation of the three-dimensional density onto a particular plane or line of our 
interest, and they satisfy the sum rule (i.e., the conservation of the number of 
electrons) exactly. Some basic properties of the marginal electron density are 
clarified for typical diatomic molecular orbitals. An illustrative application is 
given for the bonding and antibonding processes in the H2 system. 
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1. Introduction 

The (spinless) electron density function q(r) defined by 

Q(r)=N fl~(r, al;r2,~2;...,rN, aU)12dre...drNdal...daN, (1) 

is frequently used for interpretative purpose in quantum chemistry, where ~ is a 
wave function of the N-electron system under consideration. For example, 
contour maps of the electron density ~(r) conveniently provide a visual picture of 
the shapes, sizes, and bonding characteristics in molecules (see e.g., [1]). The 
density-difference function, 

A~(r) - q(r) -- ~0(r), (2) 

first introduced by Roux, Besnainou, and Daudel [2], is also employed for a 
detailed analysis of the density reorganization or distortion upon molecular 
formation, where Q0(r) denotes a reference electron density obtained by the 
superposition of the constituent atomic densities (see [3] for a review of density 
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and density-difference functions). Recently, Ruedenberg, Schwarz and coworkers 
[4] have pointed out the inappropriateness of using spherically-averaged 
reference atomic densities and developed the method of chemical deformation 
densities. 

Though the number of spatial variables is reduced from 3N in the wave 
function ~g to three in the density ~ and the density-difference A0, it is still 
inconvenient for visual analysis to treat ~ and A0 a s  a function of three 
independent spatial variables. Therefore, one usually considers a representative 
plane, e.g., z = z  o, and constructs the contour maps of O(x,y, Zo) and 
Ao(x,y, zo). In some cases, the one-dimensional cuts, e.g., Q(x, yo, Zo) and 
Ao(x, Yo, Zo) are used. In these "reduced" density-difference functions AQ(x, y, Zo) 
and Ao(x, Yo, zo), there usually appear positive and negative parts depending on 
the region specified by x and y or x alone. One often interprets this observation 
as the result of density migration from one region where A0 is negative to the 
other region where A0 is positive. However, it is clear that 

f Ao(r) dr = f Ao(x, y, z) dx dy dz =- O, (3a) 

but 

f Ao(x,y, zo)dxdy ~O and f A~(x, yo, zo)dx ~O. (3b) 

Namely, the sum rule does not hold for the reduced density-difference functions 
Ao(x, y, Zo) and Ao(x, Yo, Zo), and hence the correctness of the above interpreta- 
tion is not always guaranteed. 

Based on this motivation, we here study the use of marginal electron density 
and density-difference functions for the analysis of density reorganizations. The 
marginal functions enable us to reduce the number of variables in the density 
function to either two or one without violating the sum rule (i.e., the conserva- 
tion of the number of electrons). The definition of the marginal density and 
density-difference functions is given in the next section together with their 
relations to the experimental form factor. In Sect. 3, basic properties of the 
marginal electron density and density-difference functions are examined for six 
types of homonuclear diatomic molecular orbitals (MOs) constructed from ls 
and 2p atomic orbitals (AOs). An illustrative application of the marginal density 
function is presented in Sect. 4 for the analysis of the density reorganizations in 
the 1 + 3 + £~ and S, states of the H2 system as a function of the internuclear 
distance. Atomic units are used throughout this paper. 

2. Marginal electron density 

The electron density function q(r)= q(x,y, z) defined by Eq. (1) is a joint 
probability density function with three variables. Then the two-dimensional 
marginal density function 0xe(X, y) with respect to the variables x and y is given 
by 

t ~  

Oxy(x, Y) - j0(x ,  y, z) dz, (4) 

which is a projection of the three-dimensional density 0(x, y, z) onto the two- 
dimensional xy-plane. The other two marginal densities 0yz(Y, z) and Ox~(X, z) 
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are analogously defined. The one-dimensional marginal density is obtained by 
integrating 0(x, y, z) over two variables. For example, 

Ox(x) - f O(x, y, z) dy dz = f Oxy(X, y) dy = f Oxz(X, z) dz, (5) 

which is a projection of O(x, y, z) onto a line (the x-axis in this case). 
As is well-known, the Fourier transformation of the electron density 0(r) 

gives the form factor F(s), which determines the coherent or elastic X-ray 
scattering intensity in the Waller-Hartree theory and the elastic electron-scatter- 
ing intensity, in the first Born approximation [5, 6]: 

F(s) = J exp(is • r)0(r ) dr. (6) 

If we set sz = 0 in Eq. (6), we have 

F(sx, Sy, O) = J exp[i(sxx + Syy)]Q~y(X, y) dx dy. (7a) 

Similarly, 
t ~  

F(sx, 0, 0) = Jexp(iSxX)Ox(x ) dx. (7b) 

Namely, the marginal electron densities have another physical meaning that they 
are the Fourier transforms of the components of the form factor in the 
corresponding planes or lines. 

Since the marginal densities Oxy(X, y) etc. and Q~(x) etc. represent a "conden- 
sation" of the three-dimensional density O(x, y, z) onto a particular plane or line 
of our interest, the number of electrons is conserved; e.g., 

fe(x,y,z, axayaz=fexy(X,y)axay=fex(X)ax=N. (8, 

As a result, the marginal density-difference functions do satisfy the sum rule 

f AQxy(X,y)dxdy= f AOx(x)dx =O, etc., (9) 

where 

AQxy(X, y) - JA0(x, y, z) dz, (10a) 

AO~(x ) - .f Ao(x, y, z) dy dz, (10b) 

and so on. When we employ the difference in marginal electron densities, Eq. (9) 
therefore allows the interpretation that the density flow has occurred from one 
region to the other based on the negativity and positivity observed in the 
difference function. 

3. Marginal electron density for homonuclear diatomic MOs 

In order to study the fundamental properties of the marginal electron density 
and density-difference functions, we examine six typical MOs appearing in 
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homonuc lea r  diatomics:  

~k + (r) = (2 ± 2S) - ' /2[za(r  ) + •b(r)], S = (Za [ Z b  ),  (1 1) 

where Z. and ;~b are similar AOs centered on a and b separated by the vector  R, 
i.e., z . ( r ) -  Z(r + R / 2 )  and Z b ( r ) - - X ( r - R / 2 ) .  The Slater- type functions are 
assumed for  the AOs Z: 

Z.t., (r) = (2n) !(2~)" + 1 / 2  r n -1 exp( -- ~r) Ylm ( 0, ~b), (12) 

where (r, 0, qS) is the spherical polar  coordinates  of  r and  Yt,, is the spherical 
ha rmonic  [7]. 

Fo r  the % ls  MO,  the two-dimensional  margina l  density 0x=(x, z) is com- 
pared  in Fig. 1 with the two-dimensional  cut O(x, O, z). The difference functions 
Aox=(x, z) and AQ(x, O, z) are also given there, where the reference density 0o(r) 
has been defined by 

~Oo 09 = (1/2)[IZa(r) 12 + [Zb09121. (]  3) 
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Fig. 1. Comparison of 0(x, 0, z) with V~=(x, z), and AQ(x, O, z) with A0x:(x, z) for the ag ls MO. 
Contour values are 2 ./2 (n = 6, 7 . . . . .  17) for the densities, and 0 and ___ 2 ./2 (n = 13, 14 . . . . .  20) 
for the density differences. Dotted lines represent negative values 
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The integration over the y coordinate involved in ~z(X, z) and AOx:(X, z) has 
been performed based on the 10-term Gaussian expansion [8] of the Slater-type 
function. (For simplicity, we set R = (0, 0, 2) and ~ = 1 throughout this section.) 
For the distributions given in Fig. 1, we obtain after numerical integrations 

but 

f ox:(x, z) dx dz = 1.000, 

j O(x, O, z) dx dz = 0.475, 

AOxz (x, z) dx dz = 0.000, (14a) 

Ao(x, 0, z) dx dz = -0.025.  (14b) 

Indeed, we see the cut functions O(x, O, z) and Ao(x, O, z) are far from sum rules; 
Ao(x, O, z) emphasizes the density decrease behind the nuclei too much. How- 
ever, the qualitative features in O(x, O, z) and Ox.~(x, z) and in Ao(x, O, z) and 
AOx~(x, z) are very similar. Both the 0(x, 0, z) and 0x~(x, z) reveal ellipsoidal 
distributions corresponding to the cr-bonding situation. Accordingly, the differ- 
ence functions show the density migration from the regions behind the nuclei to 
the region between the nuclei. Consequently, the two-dimensional marginal 
density does not seem to give a new insight for the electron density 
(re)distribution at least for the ag ls MO. 

On the other hand, the one-dimensional marginal density 0~(z) is quite 
different from 0(0, 0, z). Figure 2 compares 0~(z) and 0(0, 0, z) for the six MOs 
constructed from the ls and 2p AOs. The integrations over the x and y 
coordinates involved in Oz(z) can be directly performed for the Slater-type 
function (12) and we obtain a closed-form expression for 0~(z). For example, we 
have 

~:(z) = [[/(4 + 4s)]{r(2, 2[[z + R/Z[) + r(2,  2[[z - R/Z[) 

+ 2r(2, [lz + R/z] + []z - R/z[) 

- 8[4z2RZF(-2, [lz + R/Z[ + [[z -R/Z[)}, (15) 

for the O-g ls MO, where R = IR[ and F(n, x) is the incomplete gamma function 
[9], 

F(n + 1, x) = n! e x p ( - x )  ~ (x~/i!) (n >1 0), (16a) i=O 

f n--l t F(--n,x)=[(--1)"/n!] r (0 ,  x) -- exp( -- x) ~ [(--1)ii!/x i+~] (n >0) .  (16b) i=0 
For the O-g ls MO, we first note that the cusps in Q(0, 0, z) do not appear in 0~(z). 
We also find that the marginal density 0~(z) shows a larger density accumulation 
in the internuclear region than 0(0, 0, z). Actually, 0z(z) has a nearly-flat distribu- 
tion between the nuclei, and this implies that the density distribution off the 
internuclear axis gives a nontrivial contribution to the bonding. Similarly, for the 
antibonding ~u ls MO, Q~(z) has no cusp and shows a greater amount of the 
density behind the nuclei. The emphasis of  the bonding and antibonding electron 
density contributions in 0~(z) is also observed for the Crg2p and o-, 2p MOs. The 
marginal densities 0.~(z) for the ~u2p and ~g2p MOs are found to be relatively 
similar to those of the ag ls and a,  ls MOs, respectively. This fact again shows 
the importance of the contribution of the density off the internuclear axis which 
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does not appear in ~(0, 0, z). In this relation, it is significant that in contrast to 
the function Q(0, 0, z), the marginal density ~z(z) enables us to discuss the ~ and 

(and other) densities on an equal footing. We note that ~ O~(z)dz = 1 for all 
MOs given in Fig. 2, but ~ Q(O, O, z)dz is 0.282, 0.457, 0.196, and 0.136 for the 
~g ls, ou ls, ~ 2 p ,  and ~,2p MOs, respectively. 

The density-difference functions A~(0, 0, z) and A~z(z) are compared in Fig. 
3. In accord with the features found in Fig. 2, AQz(z) has a tendency to 
emphasize the density reorganization accompanied by the bonding or antibond- 
ing nature of  the individual MOs; this is much clearer in AQz(z ) than in 
A~(0, 0, z). In particular, AQ~(z) shows that the density migrations in the ~g2p 
and cru2 p MOs are considerably larger than those expected from AQ(0, 0, z). It 
may be also interesting to see that the reorganizations in the ~2p MOs are 
comparable to those in the ols MOs. The integrations give ~ AQz(z) dz = 0 for all 
MOs, but ~ A~(O, O, z)dz = -0 .036 ,  0.139, 0.037, and -0 .023 ,  respectively, for 
the o-g ls, or, ls, o-g2p, and o-u2p MOs, and the failure of  the sum rule is evident 
for the cut function AQ(0, 0, z). 

These studies show that the one-dimensional marginal density Q=(z) and its 
difference function A~z(z) provide us with a new view of the density distribution 
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and reorganization that differs from the picture hitherto considered based on 
Ao(O, O, z). Since our above analysis has been restricted to R = 2 and ( = 1, an 
examination of a realistic system based on Oz(z) and AQ:(z) is desired. Such a 
study is presented in the next section for the prototypical bonding and antibond- 
ing processes in the H2 system. 

4. Marginal electron density in H 2 system 

We apply the marginal density analysis to the bonding (lI~-) and antibonding 
(3I~+) states of the H2 system as a function of the internuclear distance R. The 
Weinbaum function [10] is used as the parent wave function, which consists of 
the covalent and ionic terms. For the bonding singlet state, the spatial function 
is given by 

I ti~(rl ' r2 ) = ( 1 + C 2 + 2 C ( ~  c [~1 )) - l / 2 [~c ( r l ,  r2) -q- C ~ z ( r l ,  r2)], (17a)  

• c(rl, rz) = (2 + 2S 2) -m[z . ( r  ~ )Zb(r2) + Zb(rl )z.(r2)], (17b) 

q~,(rl, !"2) = (2  + 2S 2) -l/2[Za(r 1 )za(r2) q- Zb(rl )zb(r2)], (17C) 
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where S = <Za ]Zb > and where Za and Zb are ls Slater functions with the exponent 
(i.e.,)fi00 in Eq. (12)) centered on the nuclei a and b. For a given R, the two 

parameters ~ and C are variationally determined. (The Weinbaum function (17) 
yields the equilibrium distance R e = 1.430 with the total energy E = -1.147937 
for ~ = 1.19378 and C = 0.26448.) For the antibonding triplet state, the ionic term 
does not contribute by the symmetry requirement and the spatial function is given 
by 

3~(r l ,  #'2) ----- (2 - 2S 2) -1/2[za(r 1 ) Z b ( r 2 )  - -  zb(rl )~(a(F2)], (18) 

which is identical with the Wang function [11]. Corresponding to Eqs. (17) and 
(18), the three-dimensional electron density functions 10(r ) and 3Q(r) are obtained: 

IQ(r) = {(1 -Jr- C 2 + 2 C S ) D ~ a ( r )  2 -.[- Xb(r) 2] Jr- 212C + S ( I  + C2)]Zo(r)Zb(r)} 

/[(1 +$2)(1 + C 2) +4CS] ,  (19a) 

3O(r) = [Za(r )  2 -+- Zb(r) 2 -- 2 S z a ( r ) z b ( r ) ] / ( 1  - $2). (19b) 

The reference density Oo(r) is a superposition of the two ls densities located at a 
and b with the exponent ~ = 1, corresponding to the two ground-state hydrogen 
atoms: 

p0(F) = Za(r; ( = 1) 2 -~- Zb(F; ~ = 1) 2. (20) 

Figure 4 compares the one-dimensional density-difference functions 
AO(0, 0, z) and Ao.(z) for the selected internuclear distances in the bonding state. 
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The cut function A¢(0, 0, z) reveals an expected bonding characteristic that the 
electron density increases gradually in the internuclear region as the distance R 
diminishes. However, A¢(0, 0, z) emphasizes the density increase, and the density 
decrease in the regions behind the nuclei is very small. Actually, we have 
SAQ(O,O,z)dz=O.051, 0.182, and 0.361 for R = 2 ,  Re, and 1, respectively. 
Moreover, the AO(0, 0, z) function suggests that the largest density accumulation 
occurs at the nuclear positions for R = Re and 1. These trends have also been 
observed [12, 13] in the analysis based on a more accurate wave function. On the 
other hand, the marginal function AQ:(z) clearly shows the density migration 
accompanied by the bonding interaction; the electron density flows from the 
region behind to the region between the nuclei. The amounts of the density 
increase and decrease are exactly equal by the definition of the marginal density 
(Eq. (9)). The most striking feature of Ao:(Z) is that the largest density 
accumulation occurs at the center of the two nuclei. The peak height increases as 
the interaction increases (i.e., R decreases). Since the marginal density also takes 
into account the density change off the internuclear axis, the density reorganiza- 
tions described by Ao:(z) appear to be a more realistic description of the bonding 
density reorganization than those of AQ(0, 0, z). 

The corresponding density analysis for the antibonding 3 + Iu state is presented 
in Fig. 5. The cut function AQ(0, 0, z) shows the density flow from the internu- 
clear region to the outside-the-nuclei regions, reflecting the antibonding nature. 
However, S Ao(O, O, z) dz is calculated to be 0.040, 0.077, and 0.069 for R = 3, 2 
and 1, and the AO(0, 0, z) function underestimates the density decrease in the 
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internuclear region. The marginal density-difference function AQ:(z) improves 
this defect and shows the outward density migration in a consistent manner. 
AQ~(z) shows that the density decrease in the internuclear region is much larger 
than that expected from AQ(0, 0, z). The overall change in A~z(Z) is approxi- 
mately opposite to that observed for the bonding state (Fig. 4), but the density 
decrease around the center of the nuclei is sharper than the corresponding 
increase in the bonding state. 

In summary, we have studied the use of the marginal density functions 
~x:(x, z) and Q.(z) and their difference functions for the analysis of the electron 
density distribution and reorganization. The examination of  the six homonuclear 
diatomic MOs has shown that the functions O~(z) and A~z(z) provide more 
realistic density information than the usual cut functions Q(0,0, z) and 
A~(0, 0, z). Applications to the typical bonding and antibonding interaction 
processes in the H2 system have illustrated that the A~(0, 0, z) function usually 
employed gives an incorrect impression of the amount and location of the 
density migration. We may conclude that the marginal density, which satisfies 
the definite sum rule, is useful for the quantitative analysis of the electron density 
redistribution. 
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